
BGM-34B ATTACK & MULTI-MISSION RPV
The AUVM founder, LT COL HAROLD (RED) F. SMITH, acquired the drone approximately 30 years ago. The drone has been pulled out of storage and we have began the restoration process. We are in the mock up phase of the restoration, and it's a bit painstaking as we currently are lacking manuals. We will update the Facebook page and our website as progress is made.
"In the late 1960s, the Navy studied the possibility to convert the BQM-34A Firebee target drone to a remote-controlled anti-ship missile. In several test flights, BQM-34As equipped with a TV system in the nose, were successfully flown by remote "pilots" watching the TV image. Precision low-level flight above the sea was made possible by the Ryan-developed RALACS (Radar Altimeter Low Altitude Control System). In September 1971, successful tests of Model 248 missiles (called "BQM/SSM") against ship targets showed the validity of the basic concept, but the project was terminated due to lack of funding."
"In the same year, the USAF showed interest in a development of the Firebee I to be used for enemy air-defense suppression, because of the high loss rate in these missions. In March 1971, Teledyne Ryan received a contract to convert four Model 147S drones to BGM-34A (Model 234) configuration. Like the Navy's BQM/SSM, the BGM-34A was piloted by an operator watching a TV image transmitted from the drone's nose. In tests during 1971/72, the BGM-34As successfully launched AGM-65 Maverick air-to-surface missiles and electro-optically guided glide bombs against simulated SAM sites. Interestingly, almost 30 years later a firing of an AGM-114 Hellfire missile by an MQ-1L Predator UAV was much hyped as a breakthrough in armed UAV technology. "
Following the successful BGM-34A tests, Teledyne Ryan developed the BGM-34B (Model 234A) operational strike RPV. This featured the higher-rated J69-T-41A engine, a modified tail, larger control surfaces, and improved operational capabilities. Eight BGM-34Bs were built, and tested in 1973/74. The tests included the modification of some of the drones with a new nose containing a LLLTV (Low Light Level Television) camera and a laser designator, to act as a "pathfinder" for weapon-carrying RPVs."
For more information about this drone, click here.
Radioplane OQ-2
The OQ-2 is a simple aircraft, powered by a two-cylinder two-cycle piston engine, providing 6 horsepower (4.5 kW) and driving two contra-rotating propellers. The RC control system was built by Bendix.
Launching was by catapult only and recovered by parachute should it survive the target practice. The landing gear was used only on the OQ-2 versions as sold to the Army to cushion the landing by parachute.
None of the drones including the improved variants shipped to the Navy had landing gear. The subsequent variants delivered to the Army did not have landing gear.
The OQ-2 led to a series of similar but improved variants, with the OQ-3 / TDD-2 and OQ-14 / TDD-3 produced in quantity. During the war Radioplane manufactured nearly fifteen thousand drones. The company was bought by Northrop in 1952.
For more information about this drone, click here.
